Report from experiment on January 16, 2008: Au⁷⁷⁺ in RHIC

Dejan Trbojevic

- Introduction
 - Remainder: injection of Au⁷⁹⁺ in RHIC and Au⁷⁷⁺ extraction in AGS.
 - Area of interest: IBS or beam gas interactions could be possible cooling mechanisms, interest for collisions between not-fully stripped ions in RHIC ?, acceleration of not fully stripped heavy ions?, ...
- Participants this evening: Steven Tepikian, William Mackay, Nicholaos Tsoupas, John Butler, Dejan Trbojevic, and Rob Michnoff (from home).
- Details of the vacuum experiment: Titanium sublimation pumps at 8 o' clock: TSP -> CH₄
- Expected photon-decay during beam-gass interaction.

Introduction: Schematic of the experiment

Introduction:

- Au⁷⁷⁺ extraction in AGS, stripping @ U-line F2 flag, ATR line tuned for Au⁷⁹⁺ and injection of in RHIC.

The rest mass of fully stripped gold m_{Au} $c^2 = 183.4333180$ GeV

$$B_{RHIC}\rho_{RHIC} = \frac{A\beta_o\gamma_o}{Zec}m_{amu}c^2 = \frac{197}{79}\frac{\beta_o\gamma_o}{ec}m_{amu}c^2$$

$$B_{AGS}\rho_{AGS} = \frac{A\beta_o\gamma_o}{Zec}m_{amu}c^2 = \frac{197}{77}\frac{\beta_o\gamma_o}{ec}m_{amu}c^2$$

$$\frac{\beta_1 \gamma_1}{\beta_o \gamma_o} = \frac{79}{77}$$

$$\frac{B_{AGS_{-1}}\rho_{AGS_{-1}}}{B_{AGS_{o}}\rho_{AGS_{o}}} = \frac{\beta_{1}\gamma_{1}}{\beta_{o}\gamma_{o}} = \frac{77}{79}$$

- if we fix the $B\rho$ in RHIC and ATR (AGS to RHIC transfer line) only the U - line part and the AGS need adjustments.

150-350 keV ARGON AND NEON INDUCED X-RAY EMISSION FROM A Mo TARGET *

Dejan TRBOJEVIC

Fermi National Accelerator Laboratory, Batavia, IL, USA

Paul A. TREADO and Andre M. VINCENZ

Georgetown University, Washington DC, USA

Received 8 September 1986 and in revised form 17 January 1987

Fig. 1. The molybdenum L X-ray lines induced by Ar + ion bombardment with energies of 250 (curve A) and 200 keV (curve B) normalized to the ion fluences.

Collisions of the Helium like Gold ions Au⁺⁷⁷ with Al target

Experimental set-up

Fig. 2. Experimental setup at the target area.

Two photon decay

Fig. 1. Level scheme of heliumlike gold including important decay modes. All energies in keV.

Figure 1: Experimental setup in Cave A.

Figure 2: A raw and a coincidence spectrum obtained with the moveable Ge(i) detector.

Collisions of the Helium like Gold ions Au⁺⁷⁷ with Al target

Two photon decay

Collisions of the Helium like Gold ions Au⁺⁷⁷ with CH₄

Collisions of the Helium like Gold ions Au⁺⁷⁷ with CH₄

Collisions of the Helium like Gold ions Au⁺⁷⁷ with CH₄

Experimental set-up

Two photon decay

$$\frac{1}{N}\frac{dN}{dt} = \frac{1}{\tau} = n \, l \, f \, \sigma$$

$$n = 9.656 \ 10^{18} \frac{p(Torr)}{T}$$

$$f = 78 \, kHz$$

$$l \sim 40 \, m$$

$$\sigma \sim 2 \ 10^{-24} \ cm^2$$

$$\frac{1}{\tau} = 1.43 \, 10^{-7} \, \frac{1}{s}$$

$$t = 10 \text{ min}$$

$$N \, 8.6110^{-5} = \frac{dN}{dT}$$

Summary from the two experiments:

Two experiments with injecting and storing gold ions with two electrons were very successful.

- We have showed that gold ion beams could be stored at RHIC injection energy without any problem.
- The influence of the RF voltage on the Au⁺⁷⁷ stored beam:
 - has clearly shown worse beam decay with higher voltage, opposite to the expected 'cooling' effect.
 - it is not absolutely clear if the horizontal emittance growth was smaller with higher RF voltage.
- Ion beam intensity dependence on possible cooling has not yet been studied.
- A possible effect of the beam-gas interaction on cooling has not yet been studied.

We need more studies to see if there is a cooling of the gold ions Au⁺⁷⁷ with two electrons in the AGS.